Solar Preheating in Power Plants: An Overview Of The Current State Of The Technology
Abstract
Utilizing preheating units is one of the most critical ways to improve the performance of thermal power plants. Increasing the overall efficiency of Brayton or Rankine cycles by preheating the air or stream may result in considerable increases in output power and efficiency. When it comes to renewable energy, solar energy is an appealing alternative for use as a source of preheating since it is readily accessible. The current article discusses the use of solar energy for preheating air and steam in thermal power plants, as well as other uses. The performance of the systems is being improved, according to evaluations, as a result of a variety of elements, including the configuration of the reference system, the operating environment, the applied technology, and so on. Aside from improving the overall efficiency of the power plant, the incorporation of a solar preheating system may significantly decrease fuel usage and, as a result, carbon dioxide emissions. Furthermore, owing to the unavailability of solar energy during the night and overcast hours, thermal storage units may improve the system's dependability while also increasing the contribution of solar energy to the system's output.
References
[2] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke, “Blockchain technologies for the internet of things: Research issues and challenges,” IEEE Internet Things J., vol. 6, no. 2, 2019, doi: 10.1109/JIOT.2018.2882794.
[3] V. Vanhoorne and C. Vervaet, “Recent progress in continuous manufacturing of oral solid dosage forms,” Int. J. Pharm., vol. 579, 2020, doi: 10.1016/j.ijpharm.2020.119194.
[4] B. Tanç, H. T. Arat, E. Baltacıoğlu, and K. Aydın, “Overview of the next quarter century vision of hydrogen fuel cell electric vehicles,” Int. J. Hydrogen Energy, vol. 44, no. 20, 2019, doi: 10.1016/j.ijhydene.2018.10.112.
[5] А. С. Антонов, И. В. Афанасьев, and В. В. Воеводин, “High-performance computing platforms: current status and development trends,” Numer. Methods Program. (Vychislitel’nye Metod. i Program., no. 2, 2021, doi: 10.26089/nummet.v22r210.
[6] H. A. Thompson, “Wireless and Internet communications technologies for monitoring and control,” Control Eng. Pract., vol. 12, no. 6, 2004, doi: 10.1016/j.conengprac.2003.09.002.
[7] S. Royo and M. Ballesta-Garcia, “An overview of lidar imaging systems for autonomous vehicles,” Appl. Sci., vol. 9, no. 19, 2019, doi: 10.3390/app9194093.
[8] G. Dai and V. Lee, “Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine,” Adv. Heal. Care Technol., 2015, doi: 10.2147/ahct.s69191.
[9] A. Wuerger, K.-H. Niemann, and A. Fay, “Potentials for model-based energy supply forecasts - Energy management in the context of industry 4.0,” ATP Ed., no. 10, 2017.
[10] B. Sisman, J. Yamagishi, S. King, and H. Li, “An overview of voice conversion and its challenges: From statistical modeling to deep learning,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 29, 2021, doi: 10.1109/TASLP.2020.3038524.
[11] C. S. Greenberg, L. P. Mason, S. O. Sadjadi, and D. A. Reynolds, “Two decades of speaker recognition evaluation at the national institute of standards and technology,” Comput. Speech Lang., vol. 60, 2020, doi: 10.1016/j.csl.2019.101032.
[12] D. Dróżdż, K. Wystalska, K. Malińska, A. Grosser, A. Grobelak, and M. Kacprzak, “Management of poultry manure in Poland – Current state and future perspectives,” J. Environ. Manage., vol. 264, 2020, doi: 10.1016/j.jenvman.2020.110327.
[13] X. Li, J. Shang, and Z. Wang, “Intelligent materials: A review of applications in 4D printing,” Assem. Autom., vol. 37, no. 2, 2017, doi: 10.1108/AA-11-2015-093.
[14] X. Q. Cheng, Y. L. Zhang, Z. X. Wang, Z. H. Guo, Y. P. Bai, and L. Shao, “Recent advances in polymeric solvent-resistant nanofiltration membranes,” Adv. Polym. Technol., vol. 33, no. S1, 2014, doi: 10.1002/adv.21455.
[15] A. Oulas, G. Minadakis, M. Zachariou, K. Sokratous, M. M. Bourdakou, and G. M. Spyrou, “Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches,” Brief. Bioinform., vol. 20, no. 3, 2017, doi: 10.1093/bib/bbx151.
[16] L. Bruck, A. Emadi, and K. P. Divakarla, “A review of the relevance of driving condition mapping and vehicle simulation for energy management system design,” Int. J. Powertrains, vol. 8, no. 3, 2019, doi: 10.1504/IJPT.2019.101191.
[17] O. Kopishynska, Y. Utkin, A. Kalinichenko, and D. Jelonek, “Efficacy of the cloud computing technology in the management of communication and business processes of the companies,” Polish J. Manag. Stud., vol. 14, no. 2, 2016, doi: 10.17512/pjms.2016.14.2.10.
[18] R. Stanger et al., “Oxyfuel combustion for CO2 capture in power plants,” Int. J. Greenh. Gas Control, vol. 40, 2015, doi: 10.1016/j.ijggc.2015.06.010.
[19] M. Vasiliev, M. Nur-E-Alam, and K. Alameh, “Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation,” Energies, vol. 12, no. 6, 2019, doi: 10.3390/en12061080.
[20] A. Comment, “Dissolution DNP for in vivo preclinical studies,” J. Magn. Reson., vol. 264, 2016, doi: 10.1016/j.jmr.2015.12.027.
[21] L. Bridges, H. G. Rempel, and K. Griggs, “Making the case for a fully mobile library web site: From floor maps to the catalog,” Ref. Serv. Rev., vol. 38, no. 2, 2010, doi: 10.1108/00907321011045061.
[22] L. de Campos Franceschini Canale and G. E. Totten, “Quenching technology: A selected overview of the current state-of-the-art,” Mater. Res., vol. 8, no. 4, 2005, doi: 10.1590/s1516-14392005000400018.
[23] Y. Xie et al., “Health economic and safety considerations for artificial intelligence applications in diabetic retinopathy screening,” Transl. Vis. Sci. Technol., vol. 9, no. 2, 2020, doi: 10.1167/tvst.9.2.22.
[24] M. Arif, Y. Zhang, and S. Iglauer, “Shale wettability: Data sets, challenges, and outlook,” Energy and Fuels, vol. 35, no. 4, 2021, doi: 10.1021/acs.energyfuels.0c04120.
[25] T. Budai and M. Kuczmann, “Towards a modern, integrated virtual laboratory system,” Acta Polytech. Hungarica, vol. 15, no. 3, 2018, doi: 10.12700/APH.15.3.2018.3.11.
[26] C. Tan, S. R. Daemi, O. O. Taiwo, T. M. M. Heenan, D. J. L. Brett, and P. R. Shearing, “Evolution of electrochemical cell designs for in-situ and operando 3D characterization,” Materials (Basel)., vol. 11, no. 11, 2018, doi: 10.3390/ma11112157.
[27] H. Schefer, L. Fauth, T. H. Kopp, R. Mallwitz, J. Friebe, and M. Kurrat, “Discussion on Electric Power Supply Systems for All Electric Aircraft,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2991804.
[28] M. O’Leary, D. Scully, A. Karakolidis, and V. Pitsia, “The state-of-the-art in digital technology-based assessment,” Eur. J. Educ., vol. 53, no. 2, 2018, doi: 10.1111/ejed.12271.
[29] A. E. Bergles, “Recent developments in enhanced heat transfer,” Heat Mass Transf. und Stoffuebertragung, vol. 47, no. 8, 2011, doi: 10.1007/s00231-011-0872-y.
[30] L. Rüschenpöhler and S. Markic, “Self-concept research in science and technology education–theoretical foundation, measurement instruments, and main findings,” Stud. Sci. Educ., vol. 55, no. 1, 2019, doi: 10.1080/03057267.2019.1645533.
[31] D. Hill, D. M. Scarborough, E. Berkson, and H. Herr, “Athletic assistive technology for persons with physical conditions affecting mobility,” J. Prosthetics Orthot., vol. 26, no. 3, 2014, doi: 10.1097/JPO.0000000000000034.
[32] C. F. Berg, O. Lopez, and H. Berland, “Industrial applications of digital rock technology,” J. Pet. Sci. Eng., vol. 157, 2017, doi: 10.1016/j.petrol.2017.06.074.
[33] I. Erlich, F. Shewarega, C. Feltes, F. W. Koch, and J. Fortmann, “Offshore wind power generation technologies,” Proc. IEEE, vol. 101, no. 4, 2013, doi: 10.1109/JPROC.2012.2225591.
[34] A. Di Lallo, R. Murphy, A. Krieger, J. Zhu, R. H. Taylor, and H. Su, “Medical Robots for Infectious Diseases: Lessons and Challenges from the COVID-19 Pandemic,” IEEE Robot. Autom. Mag., vol. 28, no. 1, 2021, doi: 10.1109/MRA.2020.3045671.
[35] T. Y. Pang, J. D. Pelaez Restrepo, C. T. Cheng, A. Yasin, H. Lim, and M. Miletic, “Developing a digital twin and digital thread framework for an ‘industry 4.0’ shipyard,” Appl. Sci., vol. 11, no. 3, 2021, doi: 10.3390/app11031097.
[36] M. G. Krishna, M. Vinjanampati, and D. D. Purkayastha, “Metal oxide thin films and nanostructures for self-cleaning applications: Current status and future prospects,” EPJ Appl. Phys., vol. 62, no. 3, 2013, doi: 10.1051/epjap/2013130048.
[37] H.-M. Fischer, L. Dorn, and ZVEI, “Voltage Classes for Electric Mobility,” Ger. Electr. Electron. Manuf. Assoc., 2013.
[38] P. Machuca, J. P. Sánchez, and S. Greenland, “Asteroid flyby opportunities using semi-autonomous CubeSats: Mission design and science opportunities,” Planet. Space Sci., vol. 165, 2019, doi: 10.1016/j.pss.2018.11.002.
[39] NASA, “State of the Art of Small Spacecraft Technology,” State Art Small Spacecr. Technol., no. December, 2018.
[40] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Appl. Energy, vol. 137, 2015, doi: 10.1016/j.apenergy.2014.09.081.
[41] E. Saygili, A. A. Dogan-Gurbuz, O. Yesil-Celiktas, and M. S. Draz, “3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems,” Bioprinting, vol. 18. 2020, doi: 10.1016/j.bprint.2019.e00071.
[42] L. Lambrechts, B. Cole, S. Rutsaert, W. Trypsteen, and L. Vandekerckhove, “Emerging PCR-based techniques to study HIV-1 reservoir persistence,” Viruses, vol. 12, no. 2. 2020, doi: 10.3390/v12020149.
[43] X. Han, “In vivo application of optogenetics for neural circuit analysis,” ACS Chemical Neuroscience, vol. 3, no. 8. 2012, doi: 10.1021/cn300065j.
[44] R. H. Roth and J. B. Ding, “From Neurons to Cognition: Technologies for Precise Recording of Neural Activity Underlying Behavior,” BME Front., vol. 2020, 2020, doi: 10.34133/2020/7190517.
[45] L. Currin, H. Baldassarre, and V. Bordignon, “In vitro production of embryos from prepubertal holstein cattle and mediterranean water buffalo: Problems, progress and potential,” Animals, vol. 11, no. 8. 2021, doi: 10.3390/ani11082275.
[46] I. Mehdi, J. V. Siles, C. Lee, and E. Schlecht, “THz diode technology: Status, prospects, and applications,” Proceedings of the IEEE, vol. 105, no. 6. 2017, doi: 10.1109/JPROC.2017.2650235.
[47] M. Kaur, M. Sandhu, N. Mohan, and P. S. Sandhu, “RFID Technology Principles, Advantages,Limitations & Its Applications,” Int. J. Comput. Electr. Eng., 2011, doi: 10.7763/ijcee.2011.v3.306.
[48] U. Sahin, K. Karikó, and Ö. Türeci, “MRNA-based therapeutics-developing a new class of drugs,” Nature Reviews Drug Discovery, vol. 13, no. 10. 2014, doi: 10.1038/nrd4278.
[49] S. Spagnol et al., “Current use and future perspectives of spatial audio technologies in electronic travel aids,” Wireless Communications and Mobile Computing, vol. 2018. 2018, doi: 10.1155/2018/3918284.
[50] A. B. Dababneh and I. T. Ozbolat, “Bioprinting Technology: A Current State-of-the-Art Review,” J. Manuf. Sci. Eng. Trans. ASME, vol. 136, no. 6, 2014, doi: 10.1115/1.4028512.
[51] C. Tippareddy, W. Zhao, J. L. Sunshine, M. Griswold, D. Ma, and C. Badve, “Magnetic resonance fingerprinting: an overview,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 13. 2021, doi: 10.1007/s00259-021-05384-2.
[52] M. Lanzagorta and J. Uhlmann, “Overview of the current state of quantum-based technologies,” Mar. Technol. Soc. J., vol. 53, no. 5, 2019, doi: 10.4031/MTSJ.53.5.14.
[53] T. N. GAEVA et al., “Development of Technologies and Prospects for the Introduction of Aviation Biofuels,” Biotekhnologiya, vol. 36, no. 5, 2020, doi: 10.21519/0234-2758-2020-36-5-13-30.
[54] R. Arvidsson and S. F. Hansen, “Environmental and health risks of nanorobots: An early review,” Environ. Sci. Nano, vol. 7, no. 10, 2020, doi: 10.1039/d0en00570c.
[55] F. F. Hsu, “Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view,” Analytical and Bioanalytical Chemistry, vol. 410, no. 25. 2018, doi: 10.1007/s00216-018-1252-y.
[56] I. K. Stoll, N. Boukis, and J. Sauer, “Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective,” Chemie-Ingenieur-Technik, vol. 92, no. 1–2. 2020, doi: 10.1002/cite.201900118.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.